
Magnetic properties of 
transition metal complexes 

9.1 Introduction 

In the last chapter, in Section 8.4, it was suggested that the spin of an electron 
is best thought of as meaning that the electron behaves like a tiny bar magnet. 
When there are several unpaired electrons the spin degeneracies can be 
thought of as resulting from the variety of ways of arranging bar magnets 
side-by-side. Similarly, the orbital motion of the electron, the circulation of 
charge around the nucleus, can be thought of as leading to a solenoid-like 
magnet. These spin and orbital magnets will interact with an applied 
magnetic field , so that when an atom or molecule is placed in a magnetic 
field any spin degeneracy may be removed- the different resultant magnets 
behave differently. Thus, a level which is orbitally non-degenerate but is a 
spin doublet has this spin degeneracy split into two levels with slightly 
different energies in a magnetic field (corresponding to the N~S and S~N 
arrangements). If there is orbital degeneracy this too may be removed by a 
magnetic field. As we shall see, it is such splittings which determine the 
magnetic properties of a complex. Note particularly that either or both of 
spin and orbital degeneracies give rise to the magnetic effects. Sometimes 
statements such as 'the number of unpaired electrons in a complex may be 
determined from magnetic susceptibility measurements ' are encountered. 
Whilst true within their own context, they should not be read as meaning 
that in electron spin lies the sole source of magnetic effects. 

The splittings produced by magnetic fields are very small, about I em- 1 

for a field of 0.5 T, and, for the majority of cases, are proportional 
to the magnetic field. Because the splittings are so small, any particular atom 
or molecule may be in any one of the several closely spaced states resulting 
from the splitting. For a macroscopic sample, however, there will be a 
Boltzmann distribution between the levels; at room temperature kT is about 
200 em - I so ample energy is available. Clearly if we are to be able to interpret 
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experimental results, we must consider both the splittings and the Boltzmann 
distribution over them. However, because the effect of the magnetic field is 
so small we must consider any other interaction which involves energies 
corresponding to more than about I em- 1• This is because such interactions 
will play a part in determining the ground state of the complex before the 
magnetic field is switched on-this field will only cause the subsequent 
splitting. Two such interactions-spin-orbit coupling and the presence of 
low-symmetry components in what is otherwise an octahedral crystal 
field-have already been discussed in outline. The latter effect can seldom 
be neglected. One might think, for example, that an isolated [Co(NH3 ) 6]3+ 
ion would be accurately octahedral. This is not so, for there is an incompati
bility between the threefold axis of each NH 3 and the coincident fourfold 
axis of the CoN6 octahedron. Add to this the effect of the environment (and 
this means 'do not consider an isolated molecule; in solution it will be 
surrounded by a jumble of solvent molecules and in a crystal by anions-and 
these will seldom respect its octahedral symmetry'), recall the Jahn-Teller 
effect, remember that some metal-ligand vibrations will be thermally excited 
down to quite low temperatures and that lattice vibrations will persist to an 
even lower temperature, and it becomes evident that from the point of view 
of magnetism, a regular octahedral environment is a rare, if not extinct, 
species. For basically octahedral molecules, however, an octahedral model 
is a good first approximation and may be refined to take account of the 
above effects. For the majority of this chapter we shall confine ourselves 
largely to such octahedral complexes. 

Before we can proceed, some of the vocabulary of magnetism has to be 
introduced. Closed shells of electrons have neither spin nor orbital degeneracy 
and are represented by a single wavefunction. A magnetic field therefore 
produces no splitting. It does, however, distort the electron density slightly, 
in a manner akin to that predicted by Lenz's law in classical electrodynamics. 
That is, effectively, a small circulating current is produced, the magnetic effect 
of which opposes the applied magnetic field. Because there is no resistive 
damping, the current remains until the magnetic field is removed. Molecules 
with closed shells are therefore repelled by a magnetic field and are said to 
exhibit diamagnetism or to be diamagnetic. 

Suitably oriented magnets are attracted towards the magnetic field of a 
stronger magnet and the same is true for any orbital magnet and the intrinsic 
(spin) magnet associated with an unpaired electron. Molecules with unpaired 
electrons are therefore attracted into a magnetic field1 and are said to to 
exhibit paramagnetism or to be paramagnetic. For any transition metal ion 
which has both closed shells and unpaired electrons the diamagnetism of the 
former and the paramagnetism of the latter are opposed. All that can be 
measured is their resultant. Fortunately, the effect of paramagnetism is about 
100 times as great as that of diamagnetism so that it takes a great deal of 
the latter to swamp the former. Fortunately, too, it is found that the effects 
of diamagnetism are approximately additive-each atom makes a known, 
and approximately constant, contribution to the diamagnetism of a molecule 
and so diamagnetism may be fairly accurately allowed for once the empirical 
formula of a complex is known. This means that it is possible to deduce the 

1 Exceptions to this statement exist at very low temperatures. 
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intrinsic paramagnetism of a complex to an acceptable level of precision and 
to compare it with theoretical predictions. Finally, a discussion in terms of 
an isolated molecule requires that the (para)magnetic units do not interact; 
that is, these units must be spatially well separated. The jargon is to say that 
the sample must be magnetically dilute. The detailed theory of magnetically 
non-dilute substances is beyond the scope of this book, although some 
general comments on the topic are contained in Section 9.12. Actually, 
measurements at very low temperatures have shown that some of the most 
classic of coordination compounds exhibit a tiny amount of magnetic 
coupling between the transition metal ions and so are slightly non-dilute. 
Examples include K 3[Fe(CN)6], [Ni(enlJ](N03 lz, K 2 [Cu(H 20)6](S04h 
and [Ni(H 20)6]Cl2 . At temperatures much above those of liquid helium 
such compounds behave as magnetically dilute. 

9.2 Classical magnetism 

A theory of magnetism was developed long before the advent of quantum 
mechanics. This section contains an outline of this theory and defines some 
of the experimental quantities which may well be encountered. 

When a substance is placed in a magnetic field, H, the total magnetic 
induction within the substance, B, is proportional to the sum of H and M, 
where M is the magnetization of the substance: 

8 =f.10 (H + M) 

where Jlo is the vacuum permeability (in the CGS system of units Jlo is unity, 
in SI it is defined to be exactly 4n x 10- 7 N A- 2; note that N A- 2 is the 
same as H m - 1-either may be encountered). This equation may be 
written as 

~ = f.lo( 1 + ~) = f.10 (1 + K) 

where K is the volume susceptibility (the ratio of the induced magnetization 
to the applied magnetic field). A more useful quantity is the susceptibility 
per gram, X (chi), called the specific susceptibility, which is given by 

K xx
p 

where p is the density of the substance. Alternative forms of X which are 
encountered are XA and XM, the atomic and molar susceptibilities, respectively. 
These latter are obtained by multiplying X by the atomic and molecular 
weights, respectively, of the magnetically active atom or molecule. They are 
the susceptibilities per (gram) atom and mole, respectively. The former is 
no longer used but will be met in the older literature. Because our interest 
is in paramagnetism, some correction has to be made for the underlying 
diamagnetism, a topic dealt with in more length in Appendix 9. If such a 
correction has been made, it is indicated by a prime, thus x~ and x;,. Now, 

K MV 
XM = p X (MW) X H 
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where (MW) is the molecular weight and Vis the molar volume. Therefore, 

total magnetization per mole 
XM = H 

that is 

average magnetization per mole x N A 

H 

(9.1) 

where rn is the average moment per molecule and NA is Avogadro's number. 
If we have a collection of identical molecules, each of magnetic moment 

Jl and free to orient itself in a magnetic field, then in such a field 
there will be some alignment but this will be opposed by the thermal motion 
of the molecules. That is, the measured moment decreases with increasing 
temperature although Jl itself is a constant. Langevin showed that in this 
situation the average (measured) magnetic moment rn, and the actual 
moment Jl, are related by: 

- J1.2H 
m=-

3kT 
(9.2) 

a derivation of which will be found in almost every text on magnetism. 
His derivation contains the assumption that B = JloH, so the theory can 
only be expected to hold for gaseous molecules, although, as is commonly 
done, we shall ignore this limitation. Combining the last two equations 
we have 

(9.3) 

where C, the Curie constant, is equal to NJ..J1 2 f3R. The equation x = C/T is 
known as the Curie law-susceptibility is inversely proportional to the 
absolute temperature. Surprisingly, this law is obeyed rather well by many 
liquids and solids, and in particular by complexes of the first row transition 
elements. The origin of this general agreement is not clear, except under 
rather special limiting conditions. The detailed quantum mechanical treat
ment does not at all readily lead to a prediction of a CfT type of behaviour. 
For complexes of the first row transition elements it turns out that the 
agreement is because the spin-orbit coupling constants are comparable in 
magnitude to kT; at low temperatures they do not follow the Curie law so 
well. Rearranging the above equation we find: 

(9.4) 
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It is convenient to express J1 in units of Bohr magnetons,2 jJ, and so we write 
J1 = Jl,rrf1· Combining the last two equations we find that 

(3RTzM)1;2 

l'eff = NAfJ (9.5) 

Notice that, defined in this way, llorr is a pure number, the Bohr magneton 
number, which refers to a single molecule. Although often met, it is not 
strictly correct to call it the effective magnetic moment, and it certainly is 
incorrect to express it in units of Bohr magnetons, although this is a usage 
met all too often. 

9.3 Orbital contribution to a magnetic moment 

We now turn to the quantum mechanical approach to the phenomenon of 
paramagnetism and discuss first the orbital contribution to a magnetic 
moment. it is convenient at this point to make a few general statements which 
will be explained by the subsequent discussion. 

The phrase orbital degeneracy was used in Section 9.1, implying that for 
individual cases one may or may not exist. If in the free ion-in the absence 
of a magnetic field-there is orbital degeneracy (that is, if we have anything 
other than an S state ion) the free ion has an orbital magnet. If the orbital 
degeneracy is lost in a real environment-by chemical bonding or crystal 
field effects-the orbital contribution to the total magnetic moment is said 
to be quenched. If the orbital degeneracy is merely reduced, the orbital 
contribution is partially or incompletely quenched. Orbital degeneracy, 
however, although a necessary condition for an orbital moment, is not a 
sufficient condition. 

It may be recalled that in Section 8.4 the orbital moment was likened to 
the magnetic effect produced by a current in a solenoid. An even better 
analogy would be with the magnetic moment associated with a current 
flowing around a circular ring of superconducting material. If the super
conducting ring is rotated by 90"-or any other angle-about its unique 
axis, one is left with a physically identical situation (for a solenoid the ends 
of the wire coil would be in a different position after the rotation). The 
requirement for a non-zero orbital-derived moment is similar. An orbital 

2 The Bohr magncton is a fundamental quantity in the quantum theory of magnetism. Bohr's 
explanation of atomic structure \Vas based on the assumption that the angular momentum of 
an electron circulating about the nucleus of an atom is quantized and equal to nh 12n:, where n 
is an integer and h is Planck's constant. That IS, nh/2n = ma 2w, \Vhere m is the mass of the 
electron. a the radius of its orbit and w its angular velocity in radians. The area of the circular 
orbit is Ra2 and the current to which the electron circulation JS equivalent is e x (c•J/27r). From 
the theory of a current flowing through a circular loop of wire, the magnetic moment assoc1ated 
w1th the circulating electron is equal to the product 

er:.J ea 2 ro 
current x area = - x l':a2 = --

2" 2 

From Bohr's postulate, this equals 

ea2 nh he he 
- x --2 = n- = nji. where fi =-
2 2rcma 4rrm 4nm 

That is, the magnetic moment is an integer times {J. \vhere fJ is the Bohr magneton. It transpires 
that f3 is also the fundamental quantity in the modern qu<tntum mechanical treatment. 
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z 

Fig, 9.1 The circulation of electron density 
about the z coordinate axis in an incompletely 

filled t2g shell of an octahedrally coordinated 
transition metal ion. The electron density may 

be thought of as jumping from dzx to dyz to dzx 
and so on, but see the text for a more 

accurate description. 

degeneracy is needed-and this only occurs when orbitals are unequally 
occupied-but this orbital degeneracy must be such that there exist two or 
more degenerate orbitals which can be intcrconvertcd by rotation about a 
suitable axis. Consider the d,x and d,, orbitals in an octahedral complex, 
shown in Fig. 9.1. Rotation by 90° about the z axis interconverts these two 
orbitals, so that if an electron were initially in the d"' orbital it could circulate 
about the z axis by jumping between the dzx and d,., orbitals alternately. This 
circulation is equivalent to a current flowing and so it produces a magnetic 
effect. The circulation may take place in either direction, clockwise or 
anticlockwise, and in the absence of a magnetic field the two possibilities 
are degenerate (this is implicit in the orbital degeneracy). On application of 
a magnetic field the two directions of circulation have different energies, and 
this is associated with the loss of orbital degeneracy in a magnetic field. 

Four comments are relevant at this point. First, the dx,. and d,x orbitals 
arc interconverted by a rotation about the x axis and the dx,. and the d,., 
by a rotation about the y axis, and so the discussion above is relevant to 
these pairs also. Second, a more detailed analysis shows that an electron in 
the d,, orbital does not have to jump 90° to get into the d,, orbital because 
these two orbitals overlap each other. Note that this statement is not 
incompatible with the fact that these two orbitals have a zero overlap 
integral. A continuous range of rotations is allowed, so that the electron 
cloud experiences no barrier to free rotation about the z axis. Third, the 
Jahn-Teller theorem requires that the orbital degeneracy which has just been 
invoked, actually, never exists! However, because they are largely non
bonding, it is usually assumed that any Jahn-Teller splitting of the dx,, d,, 
and d,x degeneracy is small and that the orbital contribution to the moment 
is only slightly quenched. Physically, this means that an electron circulating 
about the z axis in the d,x and d,, orbitals does experience a barrier to free 
rotation but that this barrier is usually small relative to thermal energies. 
Finally, the dx, and d,,_,, orbitals are interconverted by a 45o rotation 
about the z axis. However, in an octahedral complex they are not degenerate 
and so give rise to no magnetic effect. In a free atom, on the other hand, 
they are degenerate and so contribute to the orbital magnetic moment. 
Summarizing, it turns out that for octahedral transition metal ions, only 
ground states of T1" and T2" orbital symmetries give rise to orbital-derived 
magnetic moments. E" ground states have no such moment. 

A question which at once arises is 'can a complex which has no unpaired 
electrons be paramagnetic just because of its orbital magnetism'? The answer 
is yes; two examples are provided by the permanganate ion Mn04 and by 
the ion [Co(NH 3 ) 6 ] 3 + This seems strange. There is no case in which the 
ground state of a transition metal ion has orbital degeneracy without also 
having a spin degeneracy. So, both of the two examples just given have 
orbitally non-degenerate ground states and, of course, no spin degeneracy. 
We would expect them to be diamagnetic. Without orbital degeneracy, how 
can an orbital magnetism exist? The answer lies in the existence of an excited 
state in each case which does have the required orbital degeneracy and yet 
is a spin singlet. The magnetic field mixes some of the excited state into the 
ground stale (or, equivalently, pushes a tiny bit of electron density into 
the excited state) and so the ground state assumes some of the properties of 
the excited. In particular, measurement shows that such a complex has 
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a-small-orbital paramagnetism, which is sometimes large enough to 
cancel out the inherent diamagnetism. Because this paramagnetism does not 
depend on the thermal population of levels-unlike simple paramagnetism
it is called temperature independent paramagnetism, or TIP for short.3 TIP 
is no mere academic curiosity. For diamagnetic transition metal ions it can 
be very important in determining the position of NMR resonances (the Co111 

case is particularly well studied and is cited in the 'Further reading' at the 
end of Chapter 12). In Co11 octahedral complexes the magnitude of the TIP 
is often very comparable to the correction that has to be made for the 
underlying diamagnetism. In such cases, it is better to make no correction, 
and rely on the approximate cancellation of the two effects, than to correct 
for one but not the other. 

9.4 Spin contribution to a magnetic moment 

As has been mentioned earlier in this chapter, the phenomenon of electron 
spin is best thought of as the electron behaving like a tiny bar magnet. This 
bar magnet is essentially insensitive to its environment because the latter 
imposes an electrical, rather than a magnetic, field. A single bar magnet can 
be thought of as having two orientations with respect to an applied magnetic 
field, parallel and antiparallel, and these have different energies; with a pair 
of bar magnets the possibilities increase to three (both parallel, one parallel 
one antiparallel, both antiparallel), again each of the three arrangements 
have different energies. Higher spin multiplicities can similarly be given 
simple physical descriptions. It is possible to derive a simple equation which 
holds when the spin is the sole cause of the magnetic properties of a complex, 
and this will be done in Section 9.10. Despite its simplicity, we cannot 
immediately move to it because it is important to be aware of the 
circumstances in which it is applicable. These are when other, complicating, 
effects are absent. First, these complications must be explored. In the general 
case, both orbital and spin motions will contribute to the magnetism 
displayed by a complex; their effects may be additive or opposed. Further, 
the spin and orbital magnets may interact with each other, the phenomenon 
of spin-orbit coupling. This will be covered in the next section. 

9.5 Spin-orbit coupling 

Spin-orbit coupling has to be included in a discussion of the magnetic 
properties of transition metal complexes whenever a spin-derived magnetic 
moment and an orbitally-derived magnetic moment coexist. Spin-orbit 

3 It is instructive to look at the Com case in more detail. The d electron configuration of 
Com is t~,e~ and so the ground state is 1 A 111 • Earlier in the section it was found helpful to talk 
in terms of the magnetic properties of a current flowing in a ring of supcrconducting material. 
This analogy is helpful in the present context. In the point group Oh the set of three rotations 
Rx, K,. and Rz transform as T 11r The analogy suggests that the components of the magnetic 
field also transform as T1,. This is, mdeed, the case. Now, if an excited state-call its symmetry 
species r -is to be mixed with the ground state, 1 A 1q, by the magnetic field, then the direct 
product T 1q x r must contain 1 A 11, the symmetry of the ground state. This only occurs when 
r = T 1q and so it has to be an excited 1T 111 state that gives rise to the TIP of Co1ll species. 
Reference to the d 6 Tanabe-Sugano diagram shows that such a low-lymg excited state does, 
indeed, exist. 
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coupling splits terms with both spin and orbital degeneracy into a number 
of sublevels. This phenomenon is relevant to the spectroscopic properties 
of transition metal complexes and so in Table 8.2 were listed the number of 
components obtained as a result of spin~orbit coupling. 

There is a simple method by which one may discover whether spin--orbit 
coupling mixes two d orbitals. For each d orbital, note the number of its 
nodal planes which also contain the z axis (i.e.those in which the z axis lies 
on a nodal plane). If two d orbitals differ by either one or zero in these 
numbers then the two orbitals may be mixed by spin~orbit coupling. Using 
this approach it follows that spin~orbit coupling mixes d orbitals as indicated 
below. Numbers in brackets indicate the number of nodal planes which, for 
that orbital, contain the z axis: 

d,,(O) 

/"""'
dyz(l)---<lzx(l) 

1X1 
dxy(2)-dx'-y,(2) 

The origin of this pattern will become more evident from the detailed 
discussion that will be given Sections 11.4 and 11.5. 

The magnitude of the spin~orbit coupling for a particular ion is usually 
given in terms of one of two different so-called spin -orbit coupling constants, 
( (zeta) and ) .. The former is the one-electron spin~orbit coupling constant 
and is useful when comparing the relative magnitudes of spin~orbit coupling 
for different ions. In practice, for many-electron ions, what is measured is a 
resultant spin~orbit coupling between the resultant spin magnetic moment 
and the resultant orbital moment. It is this latter spin~orbit coupling 
constant which is called ) .. For ground states the two constants are simply 
related: 

where Sis the spin multiplicity of the ion and the plus sign refers to d 1~d4 

ions and the minus sign to d6~d9 For these latter, it is simplest to think of 
holes circulating, the holes having the opposite charge to electrons. This 
point is detailed in appendix 12, which contains a specific example, although 
this particular appendix is specifically addressed to a problem that will be 
encountered in Chapter II. Values for), (and thence 0 are obtained for free 
ions from atomic spectral data and for complex ions from magnetic 
measurements of the type discussed in this chapter. 

9.6 Low-symmetry ligand fields 

Because they can, and usually do, remove orbital degeneracies-and thus 
reduce the orbital contribution to the magnetism-low-symmetry ligand fields 
cannot be ignored in a study of the magnetic properties of transition metal 
complexes. Unfortunately, it is no easy matter to determine the splitting 
effects of low symmetry fields; usually it is necessary to work with two 
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splitting parameters. Because the effects of low symmetry are so much more 
important in magnetism than in, say, spectroscopy, the magnitude of the 
parameters is best determined magnetically. However, the values of the 
distortions may be small and so impossible to detect by any other method; 
the distortion may not even be evident in a structure determination, for 
instance. In this situation the magnitude of the parameter becomes something 
of a 'fudge factor'-it is given the value that produces best agreement 
between experiment and theory. 

There is an important theorem due to Kramer, which states that when 
the ground-state configuration has an odd number of unpaired electrons 
there exists a degeneracy which a low symmetry ligand field cannot remove. 
This degeneracy, usually known as Kramer's degeneracy, arises from the fact 
that an orbital may be occupied by an electron in two ways-the spin may 
be up or it may be down. In the absence of a magnetic field these two 
orientations have the same energy. The application of a magnetic field causes 
the two to differ in energy-by about 1 em - 1-and it is the greater 
occupation of the more stable in a macroscopic sample which causes the 
sample to be attracted into a magnetic field. When there is an even number 
of unpaired electrons a low-symmetry ligand field can relieve degeneracies, 
but the application of a magnetic field then causes the lowest state to become 
even more stable. 

9. 7 Experimental results 

If there were no orbital contribution to the magnetic moment of a complex 
ion, one would have to worry a great deal less about the effects of spin-orbit 
coupling and low-symmetry fields. Table 9.1 lists the moments that would 
be expected for ions of the first transition series if there were no orbital 
contribution (spin-only moments) and compares these with room temperature 
experimental data. Also indicated in Table 9.1 is whether a significant orbital 
contribution is to be expected (that is, whether there is a ground state T 19 

or T 29 term). In Section 9.10 the spin-only equation used to predict the 
moments given in Table 9.1 will be derived. On the whole, the agreement in 
this table is not at all bad and if all one is interested in is whether a complex 
is high or low spin then, if the oxidation state is known, a simple room 
temperature magnetic susceptibility measurement4 on a tetrahedral or 
octahedral complex of a first-row element may readily be interpreted using 
the data in this table. A detailed analysis shows that the reasonable 
agreement between spin-only and experimental moments shown in Table 9.1 
is somewhat fortuitous. For d 1-d4 ions, spin-orbit coupling has the effect 
of reducing the observed moment and, roughly, cancels any orbital contri
bution. For d6-d9 ions, spin-orbit coupling increases the observed moment 
and adds to the orbital contribution. This, together with the increased 
magnitude of the spin--orbit coupling constants for these ions explains the 
few gross disagreements between spin-only and experimental values. Because 
of the very large spin-orbit coupling constants of elements of the second 
and third transition series, their complexes usually have moments much 

4 Appendix 8 contains both a description of how such mcasur~ments are made and the 
treatment of the data obtained; how the diamagnetic corrections are made, for instance. 
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Table 9.1 Comparison of calculated spin-only moments and experimental data for 
magnetic moments of ions of the first transition series 

I on Configuration• Orbital Theoetical Range of experimental 
contribution spin-only values found at 
expected? value room temperature 

Octahedral complexes 

Ti3 + dl Yes 1.73 1.6-1.75 
v•• dl Yes 1.73 1.7-1.8 
v3+ d2 Yes 2.83 2.7-2.9 
cr"• d2 Yes 2.83 ca. 2.8 
v2• d3 No 3.88 3.8-3.9 
cr"• d3 No 3.88 3.7-3.9 
Mn4 + d3 No 3.88 3.8-4.0 
cr"• d4 hs No 4.90 4.7-4.9 
cr"• d4 Is Yes 2.83 3.2-3.3 
Mn3 + d4 hs No 4.90 4.9-5.0 
Mn3 + d4 Is Yes 2.83 ca. 3.2 
Mn2 + d5 hs No 5.92 5.6-6.1 
Mn2 + d5 Is Yes 1.73 1.8-2.1 
Fe3 + d5 hs No 5.92 5.7-6.0 
Fe3 + d5 Is Yes 1.73 2.0-2.5 
Fe2 + d6 hs No 4.90 5.1-5.7 
Co2 + d7 hs Yes 3.88 4.3-5.2 
Co2 + d7 Is No 1.73 1.8 
Ni3 + d7 Is No 1.73 1.8-2.0 
Ni2 + da No 2.83 2.8-3.5 
Cu2 + dg No 1.73 1.7-2.2 

Tetrahedral complexesb 

cr>• dl No 1.73 1.7-1.8 
Mn6 + dl No 1.73 1.7-1.8 
cr"• d2 No 2.83 2.8 
Mn5 + d2 No 2.83 2.6-2.8 
Fe5 + d3 hs Yes 3.88 3.6-3.7 
unknown d4 hs Yes 4.90 
Mn2 + d5 hs No 5.92 5.9-6.2 
Fe2 + d6 hs No 4.90 5.3-5.5 
eo2• d7 No 3.88 4.2-4.8 
Ni2 + d" Yes 2.83 3.5-4.0 

a hs = high spin, ls = low spin. 
b Note that low-spin tetrahedral complexes are very rare-if any exist at all-and are not included in this 
table. 

smaller than the spin-only values. We shall see why this is so in Section 9.9. 
Lest it be thought that the sole effect of spin-orbit coupling is that of making 
life more complicated, it should be mentioned that a large spin-orbit 
coupling tends to reduce the sensitivity of the magnetic moment to low
symmetry fields, leading to a more octahedral-like behaviour-provided that 
the complex is approximately octahedral to start with. 
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9.8 Orbital contribution reduction factor 

So far in this chapter an essentially crystal field approach has been followed. 
How has it to be modified to take account of covalency? One way is to let 
the spin-orbit coupling constant vary, to become a parameter, rather than 
giving it its free-ion value. Because a molecular orbital differs from an atomic 
orbital, we would expect them to have different magnetic moments and also 
different spin-orbit coupling constants. So, the t 2 , set of d orbitals can give 
rise to an orbital contribution. What happens when it contains a ligand 
component-which, in this case, has to ben? The arguments used to justify 
an orbital contribution from the metal orbitals apply equally to the ligand n 
orbitals-the appropriate ligand combinations can be interchanged by 
suitable rotations, although it is unlikely that they will overlap with 
each other in the same way. The real question, therefore, is whether there is 
any reason to expect the ligand contribution to the moment to be equivalent 
to that part of the metal contribution which it has repla~ed. There is no such 
reason and so we must allow for the difference somewhere within our model. 
The usual way is to multiply the orbital contribution, calculated for the free 
metal ion, by a parameter, choosing that value of the parameter which gives 
the best agreement with experiment. This parameter is usually denoted k and 
is called the orbital reduction factor because it generally turns out to have 
a value of less than unity. 

9.9 An example 

This Section gives an outline of an algebraic calculation of the magnetic 
properties of a complex ion. The treatment is repeated in more detail in 
Appendix 10. In real life, the calculations would be carried out by a computer 
and some of the approximations that will be made here would not be 
necessary. However, the language of the subject is so wedded to the algebraic 
treatment that it is essential to study it, at least superficially. 

The problem that will be considered is very simple, at least in principle. 
It is that of an octahedral ti, complex. So, the theory is that of a strong field 
complex of Ti 111-strong field because the e9 orbitals are considered so high 
in energy that they can be ignored. It would be good at the end of our 
development to be able to say that the final equation gives an excellent 
account of the magnetic properties of Ti 111 complexes. Unfortunately, it is 
not possible to be so enthusiastic-indeed, it is possible that the theory is 
fundamentally flawed, although it will only be possible to appreciate why 
this is so after the theory has itself been developed. 

The d, configuration gives rise to a 2T29 ground term-- three orbital 
functions, each of which may be combined with either of two spin functions, 
giving a total of six functions to be considered. Eventually, we will arrive at 
a picture in which these six levels, although clustered together, are split apart. 
We will be concerned with the Boltzmann distribution over these separated 
levels and, in particular, the sensitivity of the distribution to the application 
of a magnetic field. In this situation, it would clearly be ridiculous to consider 
just the effects of the magnetic field and to ignore the larger effects of any 
distortion and of spin-orbit coupling. For simplicity, a distortion from 
octahedral which retains some orbital degeneracy will be considered. This 
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means a distortion which retains either a fourfold or a threefold axis. Both 
are mathematically similar, only one additional low-symmetry field splitting 
parameter being involved in either case. Of the two it is simpler to consider 
the tetragonal case because we can then retain the coordinate axes of the 
octahedron. Such a tetragonal distortion leads to the orbital triplet (t2.) 

splitting into an orbital singlet (b2•) and an orbital doublet (e.), the latter 
two labels being appropriate to D4 h symmetry. We will assume that the 
doublet is the lower in energy. Formally, we have two wavefunctions, a 2 B2• 

term, above a set of four wavefunctions, a 2 E9 • Spin-orbit coupling splits the 
2 E9 into two doublets. The final pattern is one with three distinct levels, each 
doubly degenerate, each a Kramer's doublet. These double degeneracies can 
only be split by a magnetic field. 

All that remains is to remove the Kramer's degeneracies by the application 
of a magnetic field. Here, there is a clear divergence between the computer 
and algebraic solutions to the problem. In the algebraic approach, a 
distinction is made between the effect of a magnetic field on a particular 
level itself (the so-called first-order Zeeman effect) and its effect in mixing 
different levels together (the second-order Zeeman effect). The first-order 
Zeeman effect is proportional to the magnetic field strength, H, and the 
second order to the square of the magnetic field. Computer calculations show 
that this separation into terms proportional to H and to H 2 is only 
approximate, although for the strength of magnetic fields that are used in 
experimental work, the approximation is usually a good one. 

The pattern of splittings that has just been described is shown in Fig. 9.2, 
where it has been assumed that the tetragonal field and the spin-orbit 
coupling produce effects of similar magnitudes. For clarity, in this figure, the 
effects of the magnetic field have been greatly exaggerated. In order to relate 
the energy level sequence shown in Fig. 9.2 to experiment, a value for the 
average magnetic moment per molecule XM is needed {see Section 9.2). Now, 
XM is 

2: 
all molecules 

(magnetic moment of a molecule) x 

(number of molecules with this moment) 
XM = ------'-------------

(total number of molecules) 

There is a Boltzmann distribution of molecules over the levels shown on the 
right-hand side of Fig. 9.2, so that the relative number of molecules occupying 
a level with energy E is exp(E/kT ), a quantity which can be used in the 
expression above provided that we have explicit expressions for the energy 
levels-and Appendix 10 provides them. The Zeeman part of the calculation 
provides the value of the magnetic moment for the molecules in a particular 
level. Having thus obtained a complete expression for XM, this can be related 
to the quantity usually discussed, the Bohr magneton number llerr because, 
as was shown in Section 9.2 (eqns 9.4 and 9.5) 

(9.6) 

Rather than work with the rather unwieldy equations resulting from the 
expressions given in Appendix 10 we shall simplify. We ignore the tetragonal 



Fig. 9.2 Schematic energy level diagram 
illustrating the various splittings determining the 
ground state derived from a t~g configuration. 
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distortion. With this step we obtain the Kotani model, in which just the 
effects of spin-orbit coupling and the magnetic field on a t}. configuration 
are considered. We thus obtain an important expression, derived in reasonable 
detail in Appendix 10: 

3\ (-3\) --8exp -- +8 

~~ff = k~ [ ( :;; J 
-exp--+2 
kT 2kT 

or, by putting (/kT = x (a number) the equation simplifies to 

2 
(3x- 8) exp( -=F) + 8 

f.leff = 

another equation first derived by Kotani. 
We can now plot the value of Jl,rr (given by the positive square root of 

the above expression) against x, or, more conveniently, against 1/x, to give 
a so-called Kotani plot. This has been done in Fig. 9.3. Also on this figure are 
indicated the values of (/kT for some d 1 ions at 300 K, ( being given the 
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Fig. 9.3 A Kotani plot for the t~g configuration 
together with 300 K values for some th ions. 
The spin-only formula gives ~.ff = 1. 73; 
whereas first row transition metal ions roughly 
approximate to this value at room temperature, 
values for second and third row ions can be 
very different. 

Spin-only y4+ 

----------~--------------- --- _,_...---;.__...............__ 
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free-ion value. It is seen that /l.rr is almost independent of temperature at 
high enough temperatures (the larger (, the higher the temperature needed); 
room temperature measurements on first row transition metal ions give, 
essentially, their 'plateau' values. It is under these limiting conditions that 
simple formulae such as 

!lett= Jn!n + 2) 

the spin-only formula (which will be derived in the next section), in which 
n is the number of unpaired electrons, become appropriate. For complexes 
of the second and third row transition series the spin-only formula is not 
applicable and magnetic measurements over a temperature range are 
absolutely essential, even if it is only the number of unpaired electrons which 
is to be determined. For measurements on such compounds at room 
temperature, the plateau has not been reached. 

For electronic configurations other than the one discussed above, anal
ogous calculations lead to relationships which are roughly similar to that 
shown in Fig. 9.3. /l.rr does not generally drop to zero at 0 K and, down to 
i.jkT;:::; 1.5 it may increase slightly with decreasing temperature, decreasing 
as the temperature is lowered further. If the model is not simplified and k 
(the orbital reduction factor) and t (the factor describing the distortion to a 
tetragonal field), or related functions, are included in the final energy-level 
expressions, the temperature dependence of /l,H is less than in the corre
sponding case in which they are omitted. As an illustration of this, in Fig. 
9.4 is shown a comparison between the predicted and experimental results 
for [VC16] 2 -, the cation being the pyridinium ion, C5H5NH+. Simple 
Kotani theory is roughly followed if the spin-orbit coupling constant is 
reduced to 190 em - 1 from the free-ion value of 250 em - 1 (Fig. 9.4(a)). Much 
better agreement is obtained if distortion and covalency are allowed for using 
the full energy level pattern of Fig. 9.2. This better agreement is shown in 
Fig. 9.4(b). In that figure, the theoretical curve is that calculated fork= 0.75, 
( = 150 em - 1 and t = 150 em - 1 in the expression given in Appendix 10. 
The negative sign on t implies that the orbital singlet lies lowest, not the 
orbital doublet-the distortion is the opposite to that assumed in Appendix 
I 0 and, indeed, earlier in this chapter. The job of fitting a theoretical curve 



Fig. 9.4 (a) A simple Kotani plot for [VCI6] 2 -

(( ~ 190 cm- 1). (b) A Kotani plot including 
best-fit tetragonal distortions and orbital 
reduction factors. In both cases experimental 
data are given as dots. 
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to the experimental results is best done by computer; the need for high 
experimental accuracy is evident. 

This, then, is the algebraic model. What, if anything, is wrong with it? 
Look again at Fig. 9.4(b ), where the best fit between the modified Kotani 
theory and the experimental data is shown. The lower temperature points 
seem to show a systematic divergence between experiment and theory. This 
is not surprising, for as either a qualitative consideration of the effect of 
decreasing temperature on the population of the levels in Fig. 9.2 or, 
equivalently, a study of Fig. 9.4(a) (the Kotani plot) shows, the most severe 
test of the theory is to be expected at the lowest temperatures, for here the 
average magnetic moment has its greatest temperature dependence. The 
low-temperature cut-off point in Fig. 9.4 is determined by the boiling point 
of liquid nitrogen. What if the temperature is taken down to that of liquid 
helium (3 K), an extension which is now normal. Inevitably, complications 
set in! These complications can be many-faceted. Small distortions away from 
true trigonal or tetragonal may become evident, as may long-range magnetic 
coupling between what would otherwise be regarded as isolated magnetic 
centres (some examples of this were given at the end of Section 9.1 ). 
Fortunately, at such low temperatures it is possible to measure the changes 
in thermal population of the magnetic-field split levels by another method, 
that of specific heat measurements. Such additional data are not without 
additional complications. In particular, the varying thermal population of 
the multitude of lattice vibrations has to be taken into account. Fortunately, 
at low temperatures this part of the specific heat of most solids has a T 3 
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dependence and may usually be allowed for with adequate accuracy. As this 
example and as the data available in the literature make clear, high 
temperature magnetic susceptibility data are of limited value-and some 
would say that 100 K is high-and that much more is revealed at low 
temperatures. An additional bonus is that at low temperatures it may be 
possible to use electron paramagnetic (spin) resonance spectroscopy (EPR, 
discussed in Section 12.6) to study transitions between levels such as those 
of Fig. 9.2 and so to have independent measures of them. A limited number 
of ions give room temperature EPR spectra which are well resolved but some 
which do not are found to give quite sharp lines at low temperatures. 

It is here that our circle closes. Such measurements have been made on 
some Ti111 salts and have shown the presence of a major energy contribution 
which is not present in Fig. 9.2 and is also absent from the associated text 
and Appendix 10. This contribution arises from a phenomenon that was 
discussed in Section 8.5, the dynamic Jahn-Teller effect. Throughout our 
development of the ti_ case, we assumed that the molecule under study was 
rigid. The dynamic Jahn-Teller effect introduces (some, but not all) metal
ligand vibrations into the picture. How important is all this? Well, it has 
been emphasized earlier that the magnetic properties of a complex are very 
sensitive to small distortions and therefore to vibrations. The lattice vibrations 
mentioned above and in Section 9.1 do not distort molecules-in them the 
molecules move as rigid bodies-and metal-ligand vibrations, also mentioned 
in Section 9.1, will normally be frozen out at very low temperatures. The 
dynamic Jahn-Teller effect is much less readily frozen out and so, indeed, 
it is a potential complication. When it is included in the calculation of the 
energy levels in the ti9 case, patterns such as that in Fig. 9.5 are obtained. 
The difference from Fig. 9.2, although small, is significant. Just as a 
reasonably complete understanding of the electronic spectra of transition 
metal complexes requires the inclusion of vibronic (vibrational-electronic) 
effects so it seems likely that an understanding of magnetism will too. This 
aspect of the subject is still in its infancy, although it is clear that there are 
other aspects of the magnetism of coordination compounds in which vibronic 
effects are implicated (the dynamic Jahn-Teller effect is just one form of 
vibronic coupling). 

The developments outlined in the above paragraph may well help to refute 
criticisms of that theory of magnetism which has been developed in the last 
few pages. When data from a large number of complexes were reviewed it 
was concluded that 

1. the theory produces too many ligand field parameters which, in the event, 
often seem to have no obvious chemical relevance; 

2. the models and parameters used for molecules with different geometries 
seem to bear little relationship with each other; they do not vary with 
geometry in a way that is obviously sensible; 

3. molecules with very low symmetry could not be handled. 

Since these criticisms were made the situation has improved, not only 
because the need to include the dynamic Jahn-Teller effect has been 
recognized, but also by theoretical developments. Rather than start with an 
octahedron and distort it, the present tendency is to, theoretically, build up 
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Fig. 9.5 A schematic energy level diagram corresponding to Fig. 9.2 but with inclusion of a dynamic 
Jahn-Teller effect. 

a complex using geometry-sensitive but transferable parameters for each 
ligand. Surprisingly, an economy of parameters can result. This approach 
will not be developed here (although the Further Reading at the end of the 
chapter contains a reference to it) because it tends to be molecule-specific 
but the general aspects of it will be covered in the next chapter when the 
angular overlap model is outlined. The reference in the Further Reading at 
the end of Chapter 10 on modern developments of the angular overlap 
model provides an entry into the literature on the subject. 

9.10 Spin-only equation 

The previous section has shown that even if there is an orbital contribution 
to the magnetic moment it may be reduced by covalency and by distortions. 
What if we assume that there is no orbital contribution at all-that it is 
completely quenched? In this section this problem is considered and we will 
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be led to the spin-only equation mentioned several times earlier in this 
chapter. The problem will be worked through in some detail to give the 
reader who has decided not to tackle Appendix 10 some idea of how the 
calculations are performed. 

We are interested in the case in which there are n unpaired electrons, each 
with spin -!, in an isolated ion which couple to give a resultant, denoted S, 
where S = n/2. The allowed components of S along the direction (z) of a 
magnetic field, when such a field is applied, are 

Sz = S, (S- 1), (S- 2), ... , (S- (2S- 1)), (S- 25) 

That is, the allowed components run from S through to-Sand are (2S +I) 
in number. Their energies in a magnetic field will be proportional to the 
magnetic field strength and to the magnitude of the z component of S, the 
value of S,. So, their energies will be of the form -2S,f3H, the negative sign 
indicating that the higher S, values are stabilized and the 2 being the Lande 
g factor for the electron-the splittings in a magnetic field are twice as great 
as one would expect from the magnitude of the spin angular momentum. 
So, their energies are 

-2Sf3H, -2(5- 1)[3H, -2(S- 2)[3H, ... , 2Sf3H 

The average magnetization per molecule will be given by an expression of 
the form 

L (magnetic moment of a molecule) x (number with this moment) 

(total number of molecules) 

Assuming that in a macroscopic sample there is a Boltzmann distribution 
of ions over the various S, levels, we have that the number of ions 
with moment 2S,f3H will be exp(2S,f3H/kT ). Using this and eqn 9.6 together 
with eqn 9.1, we obtain 

-s (25 [JH) 3kTNA 2: 2Sz X f3 X exp _z_ 
2 s,"s kT 

l'ett = s (25 [JH) 
NAf32 2: exp _z_ 

s,"s kT 

Simplifying and expanding the exponentials using the equation exp(x):::::; I + x, 

-s ( 25 f3H) 6kT L Sz 1 + _z_ 
2 s,"s kT 

l'ett = s ( 2S f3H) 
HfJ L 1+-z-

S,"S kT 

This equation contains three standard summations: 

so, 

-a 

LX= 0; 
-a a 
2: i' =-(a + 1)(2a + 1); 

x=a 3 

-s 
2: 1 = (25 + 1) 

S,"S 

2 6kT 2f3H S 
/lett= - X - X - X (S + 1) = 45(5 + 1) 

Hf3 kT 3 
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That is, 

llet1 = 2jS(S + 1) = Jn(n + 2) 

As we have seen, this relationship holds quite well for the first row transition 
series. For the second and third row elements it gives totally misleading 
results because the spin-orbit coupling of these ions is much greater than 
kT -so that, usually, the plateau of the Kotani plot has not been reached. 

9.11 Magnetically non-dilute compounds 

When a simple Curie law plot of XM against T _, (this pattern was discussed 
in Section 9.2) does not give a straight line it is often found that a modified 
form, the Curie-Weiss law, does: 

c 
ZM = T + 8 

Here, 0 is a constant, the Weiss constant, which has the dimensions of 
temperature, and is measured in degrees. Again, despite its widespread 
applicability, it is difficult to give a quantum-mechanical interpretation of 
this relationship. In the limiting cases where this is possible, 0 is associated 
with a breakdown of the Langevin assumption that B = H, and values of 
0 "# 0 are generally regarded as indicative of magnetic interaction between 
discrete molecules in condensed phases. 

This brings us back to an assumption made at the beginning of this 
chapter, that we could restrict our discussion to magnetically dilute materials. 
Magnetically non-dilute materials fall into one of three main classes. These 
are ferromagnetic, antiferromagnetic and ferrimagnetic-terms that, strictly, 
apply to extended lattices. In addition we will discuss the phenomenon of 
ferromagnetic and antiferromagnetic coupling between individual ions, 
leading to an understanding of the consequences of local magnetic coupling. 

In Fig. 9.6 are shown diagrams representing paramagnetism, ferro
magnetism, antiferromagnetism and ferrimagnetism, both with and without 
a (very large!) magnetic field applied. In Fig. 9.7 is shown the temperature 
behaviour of the magnetism associated with each type. Of the four classes 
of magnetically non-dilute behaviour shown in Fig. 9.6, that of ferromagnetic 
behaviour is well known-everyday magnets are made of ferromagnetic 
materials. As with the other three classes, the individual magnetic centres 
must be considered together, not separately, the correct building block being 
the unit cell of the crystalline solid. In ferromagnetic materials, such as 
metallic iron, the electron spins of each of the atoms couple together to form 
a resultant unit cell magnetic moment. Iron has a cubic unit cell so let us 
suppose that the unit cell moment is perpendicular to one of the faces of the 
unit cell. There are three pairs of such faces and in a perfect crystal of 
non-magnetized iron there are domains-within each of which there is 
magnetic alignment between adjacent unit cells-but in the whole crystal 
there is a random distribution over all of the possible orientations. The 
process of magnetization brings these moments into alignment and a 
resultant permanent moment results. These features make ferromagnetic 
materials quite different from most of those which concern a chemist and 



we shall not consider them further here, although we shall have something 
to say about molecular ferromagnetism. 

The second-and most important case for the chemist because of its 
molecular counterpart, to which we shall turn shortly-is that of antiferro
magnetism (although we will find that our discussion on this topic takes us 
to molecular ferromagnetism). In antiferromagnetic materials, transition 
metal ions are separated by (usually small) ligands, so that many transition 
metal oxides and halides show antiferromagnetic behaviour. In such com
pounds, adjacent metal ions couple with their spins antiparallel; there are 
always equal numbers with the two arrangements so that there is no resultant 
magnetization in the absence of a magnetic field. As an example of one 
complicating feature of antiferromagnetism consider the sets of four two
dimensional crystallographic unit cells, as determined by X-ray diffraction, 



FIJI. 9.7 Schematic temperature-susceptibility 
plots for various types of magnetic behaviour: 
(a) antiferromagnetism (the arrow indicates the 
maximum which has sometimes been called the 
Curie temperature, Tc, or the NSel temperature, 
TN); (b) paramagnetism; (c) ferrimagnetism; 
(d) ferromagnetism. Note that this diagram does 
not extend to very low temperatures (see 
Question 9.5, for instance) or high magnetic 
fields (when saturation effects occur). 

fill. 9.8 Crystallographic and magnetic unit 
cells. X-ray diffraction would give for all of these 
systems the unit cell pattern of the top 
left-hand diagram. Polarized neutron diffraction 
would show doubled, magnetic, unit cells for 
two of them. 
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shown in Fig. 9.8. X-rays are blind to magnetism5 and so the magnetic centres 
are represented by circles in the first diagram (ligands are omitted). We now 
admit the existence of antiferromagnetic coupling between some pairs of 
magnetic centres. In the other three sets of cells in this figure are given three 
possible antiferromagnetic arrangements of spin orientations within the 
block of four cells. It can be seen that these are all different; the bottom pair 
of arrangements contain only two magnetic unit cells. Compared with the 
32 crystallographic point groups and 230 space groups of classical crystal
lography there are 90 crystallographic magnetic point groups and 1651 
magnetic space groups. By using polarized neutrons (neutrons have an 
intrinsic spin and so behave like tiny bar magnets; in a beam of polarized 
neutrons these magnets are all essentially parallel), neutron diffraction data 
are capable of allocating an antiferromagnetic material to its correct 
magnetic space group. If this is not known, it is not possible to give a 
complete theoretical discussion of the magnetic properties of an antiferro
magnetic material. 

Antiferromagnetic materials show a maximum in a plot of XM against 
temperature, at the so-called Nee! point-this is shown in Fig. 9.7. Below 
the Nee! point the susceptibility is to some extent field-dependent. These 
properties provide an indication of the existence, or absence, of antiferro
magnetism. Other tests include a comparison of the results of solution and 
solid-state measurements, where this is possible, and, where it is not, by 
the technique of the dilution of the magnetic ions in the lattice by their 
partial substitution with an isomorphous non-magnetic ion. At temperatures 
sufficiently above the Nee! point, antiferromagnetic materials follow a 
Curie-Weiss law. Even if the Nee! point is at too low a temperature to 
be measured conveniently, the observation that a material follows the 
Curie-Weiss law usually implies a residual antiferromagnetic coupling. 

The third class is that of ferrimagnetic materials. Just as for materials 

0 0 t t 
0 0 t t 

0 0 t t 
0 0 t t 

5 This is a marginal overstatement. If the very intense X-ray beam from a synchrotron source 
is used, weak X-ray magnetic scattering-which is relativistic in origin-can be observed. The 
effect is rendered more observable by tuning the X-ray energy to coincide with an energy 
difference in the material under study, when a resonance enhancement occurs. 
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showing antiferromagnetic behaviour, ferrimagnetic materials have ions on 
two sets of lattice sites. These have opposed spin arrangements but as they 
do not cancel each other out there is a resultant permanent moment. The 
best known example is Fe30 4 , the black mineral which used to be called 
magnetic oxide of iron, but which is a complicated case because one site 
contains (formally) Fe11 and Fe"' in equal amounts, whilst the other contains 
only Fem 

A topic which has gained considerable attention is that of molecular 
antiferromagnetism (because it potentially leads to the possibility of infor
mation storage at the molecular level). This occurs when two transition metal 
ions both have unpaired electrons and are bonded together, most usually by 
bridging ligands. In such a case it is common to find that the magnetic 
properties of the complex are not simply the sum of those of the two 
individual metal ions. There is a magnetic interaction between them. This 
situation has already been anticipated at two points in the text. At the end 
of Section 8.11 it was commented that such magnetic interactions can lead 
to spectral changes; at the end of Chapter 6 it was recognized that polarized 
neutron diffraction measurements indicate that the distribution of electrons 
in a ligand is affected by the unpaired electrons on the metal atom to which 
it is bonded. The following discussion could be based on the details of Fig. 
6.31 but it is simpler to consider a case in which there is bonding between 
the metal orbital containing the unpaired electron and a ligand pure p 
orbital. This is shown in Fig. 9.9(a). Because we are interested in a ligand 
that bridges two transition metal atoms this is the situation pictured in Fig. 
9.9(a). Start at the left-hand side of Fig. 9.9(a). The metal ion electron has 
spin up. Although the ligand p orbital formally contains two electrons, we 
have seen in Section 6.2.1 that it can nonetheless be involved in bonding 
with the metal orbital. Such bonding means a pairing between the metal 
unpaired electron and that of opposite spin in the p orbital. This leaves an 
election in the p orbital which is of the same spin as that in the left-hand 
metal d orbital. Pairing between this electron and the metal d electron in 
the orbital at the right-hand side of the diagram requires that this latter d 
electron has its spin in the opposite direction to that of the d electron in 
the orbital at the left-hand side of the diagram. That is, the two metal ions 
are antiferromagnetically linked by the ligand. In this example the two 
metal ions were implicitly taken to be identical. What if they are different? 
Suppose that one-the left-hand one-has its unpaired electron in an e9 

orbital (we assume octahedral symmetry) and the other, the right-hand, has 
its unpaired electron in a t 29 . Starting with the left-hand d orbital, the 
argument follows that given above until we reach the right-hand d orbital, 
an orbital which is orthogonal to (that is, has a zero overlap integral with) 
the ligand p orbital. Unpaired electrons in orthogonal orbitals tend to align 
themselves with parallel spins (examples of this can be seen by looking back 
at Fig. 7.10)-this arrangement is exchange-stabilized. In Fig. 9.9(b), therefore, 
the electron in the right-hand d orbital is of the same spin as that in the 
left-hand. The two metal ions are ferromagnetica/ly linked. 

Key to the development of ferromagnetic coupling in the argument above 
was a step involving the orthogonality of two orbitals. The orthogonality 
need not be between metal and ligand orbitals. In Fig. 9.9(c) is shown an 
interaction pathway which includes two p orbitals on the same atom; these 



Fig. 9.9 (a) Ligand a-orbital-mediated 
antiferromagnetic coupling; (b) and (c) show 
two ways in which orbital orthogonality can lead 
to ferromagnetic coupling. 
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(c) 

p orbitals, of course, are mutually orthogonal. Again, ferromagnetic coupling 
results; in Figs. 9.9(b) and 9.9(c) the point at which exchange stabilization 
leads to parallel spins is indicated by double-headed arrows. It would be 
sensible for the reader to stop reading at this point and to trace through the 
pathway of Fig. 9.9(c) and check that a ferromagnetic interaction, indeed, 
results. 

Clearly, by careful choice of metal ions and bridging ligands (which have 
to be sufficiently rigid to provide rather fixed geometrical relationships 
between the interacting orbitals) an orthogonal step can be introduced so 
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Fig. 9.10 (a) A Cu 11-VO complex showing 
ferromagnetic interaction between the copper 
and vanadyl ions. The ligand skeleton which 
holds the two ions together is shown dotted. 
(b) On the d9 ion Cu2 • an unpaired electron is 
in an eg type of orbital; on the d1 ion V02 + an 
unpaired electron is in a t>t type of orbital. 
These orbitals are, respectively, antisymmetric 
and symmetric with respect to the vertical 
mirror plane shown as a solid line, and are 
therefore orthogonal. 

(b) 

that ferromagnetic coupling occurs between two metal atoms, leading them 
to have parallel spins. An example of such a ligand is shown in Fig. 9.10. 
Although with cunning choice ofligand and metal ion it is possible to obtain 
ferromagnetic complexes such as that shown in Fig. 9.10, in most cases the 
coupling between two linked metal atoms, each with unpaired electrons, 
will contain at least one antiferromagnetic coupling pathway-a pathway 
involving non-orthogonal orbitals-and, perhaps, a ferromagnetic coupling 
through another orbital sequence. In such cases, the antiferromagnetic 
coupling almost invariably dominates. Lastly, an important word, none the 
less important for having been left until the end. The discussion of the last 
few paragraphs hinged on the effects of exchange between electrons on 
different atoms. Irrespective of whether the outcome is ferromagnetic or 
antiferromagnetic coupling, the general mechanism involving ligand orbitals 
to mediate coupling between metal electrons is referred to as superexchange. 

Finally, although strictly out of place in this chapter, we mention 
high-temperature superconductors. They are introduced at this point because, 
as in superexchange, superconductivity involves the properties of electrons 
on different atoms being correlated with each other. At the time of writing 
this book the detailed mechanism by which high-temperature superconduc
tivity occurs is not known. The interested reader will find the problem 
explored in Appendix 11; they should be warned, however, that this appendix 
is likely to date rather rapidly! 

9.12 Spin equilibria 

In the final section of this chapter we briefly review some phenomena which, 
although involving no new concepts, nonetheless lead to some unexpected 
magnetic results. In Chapter 3 we met two forms of isomerism which have 
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magnetic implications. Because the splitting of d orbitals is a function of 
coordination geometry, a change in geometry may well mean a change in 
the number of unpaired electrons. So, the existence of geometrical isomerism 
(discussed in Section 3.4.2) may well be magnetically evident (it will be 
spectrally apparent also). Many examples are provided by Ni" complexes; 
this ion forms many square planar complexes-which are diamagnetic
which may isomerize to give tetrahedral species. The latter, being d 8, have 
two unpaired electrons; the reverse isomerization may also occur, of course. 
This pattern of behaviour is particularly common for Ni" complexes of 
general formula [NiP2X2], where X is a halogen and P is an organophosphine 
ligand. Typically, the square planar form is red or brown and the tetrahedral 
green, the Ni" in the latter having a magnetic moment of ca. 3.5 (see Table 
9.1). 

The second form of isomerism which has magnetic implications is spin 
isomerism (see Section 3.4.12). This occurs because with the correct choice 
of ligand (and much effort has been spent on ligand design and variation) 
the value for 11, for an octahedral complex can be made to be close to that 
appropriate to the change-over point from high to low spin complexes in 
d4 , d 5, d 6 and d7 systems (see the Tanabe-Sugano diagrams in Appendix 7 
for an idea of the magnitude of ligand field required). Most known examples 
come from the 3d series-Mn", Mn111, Co", Co111 and, particularly, Fe" and 
Fe111 • Because the two spin states in equilibrium involve different t 2.-e. 
populations, the metal-ligand bond lengths would be expected to vary 
between the two spin isomers. X-ray measurements show that the M-L bond 
lengths tend to be roughly 0.2 A longer in the high spin form because the 
e. orbitals are weakly antibonding and have a higher occupancy in the high 
spin isomer. Not surprisingly, therefore, the spin equilibria are pressure 
sensitive, as well as sensitive to the choice of counterion, any solvent of 
crystallization as well as steric effects originating in the ligands. Many studies 
have been made of the lifetimes of each of the species in equilibrium. These 
lifetimes are about 10- 7 s, but vary by at least one order of magnitude in 
either direction. Often, the magnetic susceptibility changes on warming a 
sample are not opposite of those on cooling, this hysteresis indicating some 
cooperative, perhaps domain, behaviour. Although, magnetically, both spin 
states are unexceptional, the study of the equilibria between them has been 
energetically pursued by many workers and has involved the use of almost 
all of the techniques described in this book (especially those described in 
Chapter 12), and more. 

Chemistry J. Lewis and R. G. Wilkins (eds.), Interscience, 
New York, 1960. 

The literature on this subject tends to divide between the old, 
which provides the best available treatment of the classical 
(including the classical quantum mechanical), and the recent, 
which provides an up-dating of the earlier. Older are: 

• 'The Magnetic Properties of Transition Metal Complexes' 
B. N. Figgis and J. Lewis, Prog. Inorg. Chern. (1964) 6, 37 

• A useful review which also includes an extensive compilation 
of diamagnetic corrections is 'Magnetochemistry-Advances 
in Theory and Experimentation' C. J. O'Connor, Prog. Inorg. 
Chern. (1982) 26, 203 

• Magnetism and Transition Metal Complexes F. E. Mabbs and 
D. J. Machin, Chapman & Hall, London, 1973. 

• 'The Magnetochemistry of Complex Compounds' B. N. 
Figgis and J. Lewis, Chapter 6 in Modern Coordination • A still-current view of theory, experiment and problems is 
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• 'A Local View of Magnetochemistry' M. Gerloch, Inorg. 
Prog. Chern. (1979) 26, 1. 

Problems in the effects of magnetic coupling are reviewed in 
'Magnetochemistry: a research proposal' R. L. Carlin, Coord. 
Chern. Rev. (1987) 79, 215. 

An excellent current book is Molecular Magnetism 0. Kahn, 
VCH, Weinheim, 1993; a rather different account is 'Organic 
and Organometallic Molecular Magnetic Materials-Designer 
Magnets', a very long review by J. S. Miller and A. J. Epstein in 
Angew. Chern., Int. Ed. (1994) 33, 385. 

A detailed account of magnetic phases and phase transitions 
at low temperatures is 'Magnetic phase transitions at low 

Questions 

9.1. Show that the metal d orbital and the ligand <I orbitals 
that contain unpaired spin density in Fig. 6.31 are orthogonal 
to each other. (Hint: consider their symmetries.) 

9.2. Show that the interactions shown in Fig. 9.9(c) lead to a 
ferromagnetic (parallel spin) coupling of the two metal ions. 

9.3. If one step involving orthogonal interactions leads to a 
ferromagnetic interaction, then two such steps should lead to an 
antiferromagnetic. Check this conclusion by replacing one of 
the d orbitals shown in Fig. 9.9(c) by a t 2 • d orbital and tracing 
through the coupling pathway. 

9.4. Figure 9.8 does not exhaust the possible two-dimensional 
antiferromagnetic arrangements of two magnetic ions; three 

temperatures' J. E. Rives, Transition Met. Chern. (1972) 7, I. 
A more general account is 'Magnetic Symmetry' by W. Ope
chowski and R. Guccione, Chapter 3 in Magnetism, Volume IIA, 
G. T Rado and H. Suhl (eds.),Academic Press, New York, 1965. 

More recent, and concentrating on systems of two transition 
metal ions, is 'Magnetism of the Heteropolymetallic Systems' 
0. Kahn, Struct. Bonding (1987) 68, 89. 

Spin equilibria are covered in 

• 'Dynamics of Spin Equilibria in Metal Complexes' J. K. 
Beattie, Adv. Inorg. Chern. (1988) 32, I. 

• 'Static and Dynamic Effects in Spin Equilibrium Systems' 
Coord. Chern. Rev. (1988) 86, 245. 

9.5. In Fig. 9.9 and the associated discussion within the text, 
the ligand orbital involved in superexchange was a <I orbital. 
Ligand n orbitals may also be involved. Figure 9.12 is the ligand 
n orbital equivalent of Fig. 9.9(a). Give an account of Fig. 9.12 
which parallels that given in the text for Fig. 9.9(a). 

more are shown in Fig. 9.11. However, unit cells similar to M L M 
those of Fig. 9.8 are not given. Insert them. To complete this 
task for the third diagram will require the recognition of a Fig. 9.12 Question 9.5. 
feature not discussed in the text. 

Fig. 9.11 Question 9.4. 

9.6. There is a, perhaps, unexpected result contained in Fig. 
9.4. At 0 K a system with a single unpaired electron is predicted 
to be non-magnetic. Give a qualitative explanation for this 
behaviour (remember-there are two sources of magnetism, 
orbital and spin). 


